[Перевод] Как строить умных AI-агентов: уроки Context Engineering от Manus
newsare.net
В самом начале проекта Manus перед нашей командой встал ключевой вопрос: обучать ли end-to-end агентную модель, используя open-source foundation-модели, или же[Перевод] Как строить умных AI-агентов: уроки Context Engineering от Manus
В самом начале проекта Manus перед нашей командой встал ключевой вопрос: обучать ли end-to-end агентную модель, используя open-source foundation-модели, или же строить агента поверх возможностей in-context learning у frontier models?В моё первое десятилетие в NLP у нас и выбора-то такого не было. В далёкие времена BERT (да, прошло уже семь лет) модели приходилось fine-tune'ить и тестировать, прежде чем они могли переноситься на новую задачу. Этот процесс часто занимал недели на одну итерацию, даже при том, что тогдашние модели были крошечными по сравнению с сегодняшними LLM. Для быстроразвивающихся приложений, особенно на этапе до PMF, такие медленные циклы обратной связи — смертный приговор. Это был горький урок из моего прошлого стартапа, где я обучал модели с нуля для open information extraction и семантического поиска. А потом появились GPT-3 и Flan-T5, и мои внутренние модели стали не актуальны буквально за ночь. Ирония в том, что именно эти модели положили начало in-context learning — и открыли совершенно новый путь развития.Из этого болезненного опыта выбор был очевиден: Manus делает ставку на context engineering. Это позволяет выпускать улучшения за часы, а не за недели, и держит наш продукт ортогональным по отношению к базовым моделям: если прогресс моделей — это прилив, то мы хотим, чтобы Manus был лодкой, а не сваей, вбитой в морское дно.Тем не менее context engineering оказался далеко не тривиальным делом. Это экспериментальная наука — и мы перестраивали наш агентный фреймворк четыре раза, каждый раз находя более удачный способ формировать контекст. Мы с любовью называем этот ручной процесс перебора архитектур, подбора промптов и эмпирических догадок «Stochastic Graduate Descent». Это не изящно, но работает.В этом посте я делюсь локальными оптимумами, к которым мы пришли через собственный «SGD». Если вы создаете своего AI-агента, надеюсь, эти принципы помогут вам сойтись к решению быстрее. Читать далее Read more