Как мы в билайне боремся со спам-звонками с помощью машинного обучения, часть 1
Всем привет! Меня зовут Наталья Багрова, сегодня расскажу, какие есть возможности у крупного телеком-оператора для борьбы с таким неприятным явлением как голосовой спам; какие логические и технические трудности ждали нас на этом пути, как мы их решали и к чему пришли. Мы сконцентрируемся в первую очередь на том, как мы строили модель с нуля до первого жизнеспособного прототипа.Давайте начнем с краткого обзора рынка антиспам-услуг. Очень условно всех поставщиков антиспам услуг можно разделить на две категории: те, кто видят трафик (телеком-операторы) и те, кто видят отзывы (приложения Яндекса, Тинькофф или Kaspersky, которые собирают отзывы с абонентов). Если посмотреть на то, как устроен дизайн услуги, то это либо блокировки, когда спам-звонок в принципе не доводится до абонента или же уводится на голосового ассистента, а затем присылается текстовая расшифровка, либо же просто подсвечивается, кто сейчас звонит, и всю ответственность за решение, разговаривать сейчас или нет, несет сам клиент. Если мы говорим о билайне, то мы себя относим в первую очередь к тем, кто видит трафик, и идем путем голосового ассистента.Плюсы и минусыКакие у нас есть сильные стороны? Читать далее