Анализ торговых стратегий для акций Мосбиржи на дневных интервалах с помощью Python
Торговля акциями требует гибкости, особенно когда речь идет о тестировании стратегий технического анализа на прошлых данных. Я выбрал Python и библиотеки backtesting.py и aiomoex, потому что они позволяют анализировать рынок без сложных платформ и ограничений. Python дает свободу автоматизации, backtesting.py обеспечивает удобный и быстрый механизм тестирования стратегий, а aiomoex позволяет скачивать данные напрямую с Московской биржи без привязки к брокеру.Важно, что backtesting.py получил обновление после четырех лет без обновлений, что делает его актуальным инструментом. И в отличие от MetaTrader, StockSharp, TSLab и Quik, которые работают с Московской биржей, но требуют Windows, если брокер имеет API, то можно запускать скрипт на любом сервере, включая облачные решения и Raspberry Pi.В этой статье я протестирую самую свежую стратегию теханализа Джона Ф. Элерса (John Ehlers), направленную на устранение запаздывания скользящей средней. Разберемся, как её адаптировать к акциям Московской биржи и протестировать с помощью Python. Исследование теханализа