newsare.net
C. Яковлев mg.sc.comp e-mail: tac1402@gmail.comDisclaimer. Это анонс, я еще работаю над научной статьей, но пока не могу найти ментора для возможности публикацОбучение скрытых слоёв S–A–R перцептрона без вычисления градиентов
C. Яковлев mg.sc.comp e-mail: tac1402@gmail.comDisclaimer. Это анонс, я еще работаю над научной статьей, но пока не могу найти ментора для возможности публикации в arxiv.org. Но пока хочу поделится с вами некоторыми сырыми результатами. Аннотация. Классический перцептрон Розенблатта с архитектурой S–A–R исторически не имел устойчивого алгоритма обучения многослойных структур. В результате в современном машинном обучении доминирует метод обратного распространения ошибки (backpropagation), основанный на градиентном спуске. Несмотря на успехи, этот подход имеет фундаментальные ограничения: необходимость вычисления производных нелинейных функций и высокая вычислительная сложность. В данной работе показано, что при интерпретации работы нейросети через алгоритм ID3 (Rule Extraction) скрытый слой автоматически формирует чистые окрестности в смысле кластерного анализа — признаки группируются по классам ещё до завершения обучения. На основе этого наблюдения автором предложен новый стохастический алгоритм обучения, восходящий к идеям Розенблатта, но принципиально расширяющий их: он позволяет обучать скрытые слои перцептрона без вычисления градиентов. Таким образом, впервые решается классическая проблема обучения архитектуры S–A–R без градиентных методов. Это открывает путь к созданию принципиально новых алгоритмов обучения нейросетей с более простой и интерпретируемой динамикой. Читать далее Read more