Трёхстрочный Deep Learning: 20 примеров нейросетевой магии
В 2012 году AlexNet потряс мир — тысячи строк кода, две видеокарты, недели обучения. Сегодня вы превзойдёте его одной строкой, а модель загрузится за секунды.В статье — 20 полностью рабочих примеров глубокого обучения, каждый ровно в три строки Python. Анализ тональности, резюмирование текста, вопросно-ответные системы, генерация текста, перевод, NER. Детекция объектов, сегментация, оценка глубины, поиск изображений по описанию. Мультимодальные модели, которые отвечают на вопросы о картинках. Это не упрощение и не обман. За тремя строками скрываются модели с миллиардами параметров: BERT прочитал всю Википедию, GPT-2 обработал 40 ГБ текста, CLIP просмотрел 400 миллионов пар «картинка-описание». Всё это знание теперь доступно через один вызов функции.Никакой дополнительной подготовки данных, никаких конфигурационных файлов, GPU не требуется. Скопируйте код — и получите результат, на который ещё пять лет назад ушли бы недели. Те же модели прямо сейчас работают в production у Netflix, Google и тысяч стартапов. К концу статьи вы освоите 20 техник, покрывающих большинство задач NLP и компьютерного зрения — и каждая уместится в твит. Читать далее