M23-Spectrum: инициализация весов нейросети через теорию групп Матьё
Когда мы говорим об обучении глубоких нейронных сетей, первое, о чём думают — это архитектура, функция потерь, learning rate. Инициализация весов кажется скучной технической деталью: «ну Xavier/He поставил и забыл». Но за этой простотой скрывается фундаментальная проблема.Xavier (Glorot, 2010) и He (2015) инициализируют веса из случайных распределений с дисперсией, масштабированной под размер слоя. Это работает хорошо для неглубоких сетей, но с ростом глубины возникает системная проблема: спектральный радиус матрицы весов отклоняется от 1, и сигнал либо затухает, либо взрывается при прохождении через десятки слоёв.Динамическая изометрия — концепция, которая говорит: чтобы сигнал сохранялся, нужно $rho(W) approx 1$ на каждом слое. Добиться этого статистически сложно, особенно стабильно. Но что если взять структуру, где это гарантировано алгебраически? Читать далее